What is observational research?

Contemporary research is often associated with controlled experiments or randomized controlled trials, which involve testing or developing a theory in a controlled setting. Such an approach is appropriate for many physical and material sciences that rely on objective concepts such as the melting point of substances or the mass of objects. On the other hand, observational studies help capture socially constructed or subjective phenomena whose fundamental essence might change when taken out of their natural setting.

What is an example of observational research?

For example, imagine a study where you want to understand the actions and behaviors of single parents taking care of children. A controlled experiment might prove challenging, given the possibility that the behaviors of parents and their children will change if you isolate them in a lab or an otherwise unfamiliar context. Instead, researchers pursuing such inquiries can observe participants in their natural environment, collecting data on what people do, say, and behave in interaction with others. Non-experimental research methods like observation are less about testing theories than learning something new to contribute to theories.

Uses for observational research

The goal of the observational study is to collect data about what people do and say. Observational data is helpful in several fields:
  • market research
  • health services research
  • educational research
  • user research
Observational studies are valuable in any domain where researchers want to learn about people's actions and behaviors in a natural setting. For example, observational studies in market research might seek out information about the target market of a product or service by identifying the needs or problems of prospective consumers. In medical contexts, observers might be interested in how patients cope with a particular medical treatment or interact with doctors and nurses under certain conditions.
Observational research is employed in user research to see how users interact with technologies and technological platforms. Photo by Firosnv. Photography.

Observations in research

Researchers may still be hung up on science being all about experiments to the point where they may overlook the empirical contribution that observations bring to research and theory. With that in mind, let's look at the strengths and weaknesses of observations in research.

Strengths of observational research

Observational research, especially those conducted in natural settings, can generate more insightful knowledge about social processes or rituals that one cannot fully understand by reading a plain-text description in a book or an online resource. Think about a cookbook with recipes, then think about a series of videos showing a cook making the same recipes. Both are informative, but the videos are often easier to understand as the cook can describe the recipe and show how to follow the steps at the same time. When you can observe what is happening, you can emulate the process for yourself. Observing also allows researchers to create rich data about phenomena that cannot be explained through numbers. The quality of a theatrical performance, for example, cannot easily be reduced to a set of numbers. Qualitatively, a researcher can analyze aspects gleaned from observing that performance and create a working theory about the quality of that performance. Through data analysis, the researcher can identify patterns related to the aesthetics and creativity of the performance to provide a framework to judge the quality of other performances.

Weaknesses of observational research

Science is about organizing knowledge for the purposes of identifying the aspects of a concept or of determining cause-and-effect relationships between different phenomena. Experiments look to empirically accomplish these tasks by controlling certain variables to determine how other variables change under changing conditions. Those conducting observational research, on the other hand, exert no such control, which makes replication by other researchers difficult or even impossible when observing dynamic environments.